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Sparks and waves in a stochastic fire-diffuse-fire model of G4 release
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Calcium ions are an important second messenger in living cells. Indeed, calcium signals in the form of
waves have been the subject of much recent experimental interest. It is now well established that these waves
are composed of elementary stochastic release evesitsum puffs or sparksfrom spatially localized cal-
cium stores. Here we develop a computationally inexpensive model of calcium release, based upon a stochastic
generalization of the fire-diffuse-fire threshold model. Our model retains the discrete nature of calcium stores,
but also incorporates a notion of release probability via the introduction of threshold noise. Numerical simu-
lations of the model illustrate that stochastic calcium release leads to the spontaneous production of calcium
sparks that may merge to form saltatory waves. In the parameter regime where deterministic waves exist, it is
possible to identify a critical level of noise, defining a nonequilibrium phase transition between propagating
and abortive structures. A statistical analysis shows that this transition is the same as for models in the directed
percolation universality class. Moreover, in the regime where no initial structure can survive deterministically,
threshold noise is shown to generate a form of array enhanced coherence resonance, whereby all calcium stores
release periodically and simultaneously.
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. INTRODUCTION of C&™ by intracellular stores is self-regulating. A variety of
kinetic schemes have been proposed in connection with these
Variations in calcium concentrations are a vital compo-mechanisms and typically lead to deterministic models
nent of many cellular processes, including intracellular andvhich reduce to either excitable, oscillatory, or bistable dy-
extracellular signaling processes, muscle contraction, cetiamical systems. If whole cell models are assumed to be of
fertilization, cell aptoptosis, and neuronal plastidifi). In-  reaction diffusion type then powerful techniques from con-
novative techniques for calcium imaging have allowed extinuum mechanics can be brought to bear in studying nonlin-
perimentalists to resolve spatiotemporal patterns of oscillaear waveg7—-14]. When models respect the fact that chan-
tions and waves in both isolated cells and tis¢see, for nels act as discrete €& stores, translation symmetry is
example, Ref[2]). These dynamical phenomena are believedoroken and one cannot use such techniques. Importantly, this
to be subserved by specific molecular mechanisms for thiss of translation symmetry is a prerequisite for the exis-
control of calcium influx and efflux through the cell's outer tence of a saltatory wave. However, the observation of spon-
membrane. This is typically effected by voltage-gated iontaneous C&" puffs or sparks and the fact that calcium waves
channels, calcium exchangers and pumps, as well as calciucan abort suggest that a predominantly deterministic model,
release mechanisms from internal compartments within thevhether based on a discrete or continuum description of
sarcoplasmic or endoplasmic reticulum and mitochondriaktores, is still not the whole story. Keizer and Snjit’] and
stores(see Ref[3] for a tutorial discussion When calcium  Falcke, Isimring, and Levingl6] have emphasized the im-
is released from internal stores into the cytosol, a wave oportance of modeling stochastic release kinetics when con-
increased concentration can travel without deformation, desidering initiation and subsequent propagation of waves.
fining smooth propagation, or with a lurching quality, defin- Both have observed waves that abort in the presence of
ing saltatory propagation. For example, the calcium releasmoise, and also shown how noise may generate a spark-to-
wave in immature xenopus oocytes is saltatory while thewvave transition. A recent numerical study of the spark-to-
fertilization wave in mature oocytes is smooth. There is awave transition in cardiac cells may be found in Réf7].
vast and growing body of theoretical work devoted to under- The model of Keizer and Smith considers a stochastic
standing the basic biophysical mechanisms underlying thesganodine receptor channel embedded with a continuous cell
waves(see, for example, Ref$4—6]). A common starting model of reaction diffusion type. The numerical simulation
point for much of this work is the observation that®Cais  of the model requires combining the evolution of a nonlinear
released from internal stores through channels with nonlinegpartial differentiation equatiofPDE) with a continuous time
properties. A form of autocatalytic amplification, known as Markov process describing the transitions between the open,
calcium-induced-calcium-release, favors channel opening ielosed, and several intermediate states of the ryanodine re-
the presence of increased cytosolic calcium. After an opegeptor. The model of Falcke, Isimring, and Levine considers
channel closes via inactivation, it cannot reopen for some stochastic version of the De Young—Keizer inositol 1,4,5-
time during which it is in aefractory state. Thus, the release trisphosphate (1§ receptor model, but with channel clusters
at lattice points coupled bfastdiffusion. The assumption of
fast diffusion and linearity of the equation for calcium trans-
*Electronic address: S.Coombes@Iboro.ac.uk port allows an adiabatic elimination of the calcium dynamics
"Electronic address: I.Timofeeva@Iboro.ac.uk in favor of purely stochastic continuous time Markov process
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for the channel configurations of thelPeceptor. Without —how this leads to a natural description of release events, us-
the need to numerically evolve a PDE to determine calciuning & probabilistic rather than a deterministic update rule.
profiles, this leads to a computationally cheap model. The effects of threshold noise are explored in Sec. lll. Here,
In this paper we will pursue the construction of anotherWe focus on a one-dimensional cell model that, in the ab-
computationally cheap, yet biophysically realistic, model ofS€nce of noise, can support a traveling saltatory wave. Suf-
intracellular calcium release. We take as our starting pointiciently large threshold noise is able to terminate a wave
the deterministic fire-diffuse-fir¢FDF) model of Keizer ~Prematurely, suggesting that for some critical noise level,
et al. [18]. This was originally intended as a model of car- there is a nonequilibrium phase transition between propagat-
diac myocytes, in which calcium release occurs via ryanoding and abortive waves. A statistical analysis shows that the
ine receptor C& channels located in a regular array in the model exhibits properties consistent with the behavior of
sarcoplasmic reticulum. However, the model can also be forother models from the universality class of directed percola-
mulated for a continuum distribution of storfs9]. More-  tion (see Ref.[23] for a review. A study of a two-
over, a version of the FDF model, which describes ie- dimensional cell model is presented in Sec. IV. Here, we
ceptors, has recently been introduced, motivated by §h_ow that not only does the model support n0|s.y'C|rcuIar and
reduction of the De Young—Keizer moddl4]. A mathemati- spiral waves, as expected, but can also exhlbl_t a form of
cal analysis of waves in the deterministic FDF model can bé'T@y eénhanced coherence resongifge-26. We find that
found in Refs.[19—24. The FDF model uses a threshold coherent motion, in the form of simultaneous and periodic
process to mimic the nonlinear properties ofCahannels. release of calcium from all stores can be induced purely by

A stochastic generalization of the model is introduced aftefCise: Finally, in Sec. V we discuss natural generalizations of

considering how threshold noise can determine release proQY" model.

ability. Functional forms for the distribution of this threshold

noise can be inferred from the recent observation of Izu, Il. THE MODEL

Wier, and Balkg17] that the probability of release per unit The FDF mode[18—27 is an idealized model of G4
time has a S|gm0|dgl fgnctlonal form. This leads to a mOdelrelease from internal stores in living cells. It is an all or
with simple probabilistic update rules for the release of cal-

cium from internal stores. By avoiding a Markov rocessnmhing release model in which a fixed amount of Cas
o - BY 1ding P released when the cytosolic €adensity in the neighbor-
description of channel gating, we sidestep the need for co

putationally expensive Monte Carlo—type simulations Morg_}iood of a release site reaches a certain threshold. The partial
over, the simplicity of the underlying deterministic FDF differential equation describing the density of‘Cadenoted

model can lead to further computational improvements.by u(r.1), is given by

When considering a discrete set of release sites and calcium u
puffs that have a simple on/off temporal structure, the cal- i —+DVau+ E Z S(r=ry)n(t=TM (1)
cium profile can be solved for in closed form, without the Td nel mez

need for assumptions such as fast diffusion. This obviates tr\ﬁith reR andteR*

need to numerically evolve a PDE to obtain calcium prOfIIeS”the cell model and’ is a discrete set that indexes the stores.

In Sec. Il we describe the FDF model with a discrete - - - +ooa
distribution of release sites. We prefer to discuss the discreti\e!ecmrsr“ determine the locations of thépoiny Ce* re

. . : Jéase sites, whilst th&, give the time of release of theth
rather than the continuous formulation of the model since it Uff at thenth release site. The function(t) describes the
is less studied, yet reduces to the continuum description i : on(t)

+ :
the limit of zero spacing between release sites. We make th hape of a Ca_ puff, which we shall take to be a rectangular

assumption that release events occur on a regular tempoﬁwse shape given by

lattice, to simplify the model so that it may be rewritten in o

the language of binarselease eventd\s it stands, the origi- 7(t)=—0(1)0 (1), 2

nal FDF model does not allow for any refractory processes. T

We introduce a dynamics for the release events, which als here ® is a Heaviside step function. The strength of the
SErves as a simple phenomenological model for ref.raCtoriéalcium puff iso, andr is interpreted as the rise time of the
ness. The calcium profile of the.mo'del can then be_wrlt_ten a eceptor. The model is highly nonlinear because the release
the the sum of two terms. The first is a linear combination ofy, ants are implicitly determined by the times at which the

basis functions, with coefficients given by the release eventg- 2+ density at a release site takes the threshold vajue
The second is a simple convolution of the initial data with More precisely, we write

the Green’s function of the model without stores. In this
deterministic model, release events are calculated via a TM=inf{t|u(r,,t)>ug,u/(ry,t)>0TT>TM 14+ 7o},
thresholding of the calcium profile at a release site. Direct (3)
numerical simulations are used to show that this computa-

tionally simple version of the FDF model provides an accu-to indicate that release events must be separated by at least a
rate representation of the original. Moreover, it is in the idealtime 75, the refractory time scale. The decay timgin Eq.

form to be generalized to incorporate stochastic effects. Thé€l) models the time scale associated with the action of
FDF threshold is assumed to be the most appropriate point aarcophasmic/endoplasmic reticulum calcium pumps that re-
which to introduce a source of noise to the model. We shovsequester the G4 back into the stores. The transport of

. Here,l is the physical dimension of
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Ca" is assumed to be by diffusion with diffusion coefficient where

D. The mode of propagatiofcontinuous or saltatojyde- .

pends on the ratio of the time that a single site remains open H(rt)= f G(r,t—s)ds (12)

to the time it takes for calcium to diffuse between neighbor- 0

ing release sitegl9]. If this ratio is large enough, the propa-

gation is continuous and wave speeds scalg@s and if it

is small enough the propagation is saltatory and wave speeds

scale linearly withD. The analytical tractability of the model (Geup)(rt)= f G(r—r',t=p7uy(rHdr’. (12

is not only useful for gaining insight into the dependence of R

wave speed on system parameters, but can help in rechCiIE‘%bmpared to the original FDF model, the one we have de-

the computational demands on a numerical scheme for thejneq here is computationally cheaper to solve. Release

self-consistent evolution of Eql). Consider for the mo- events defined bya,(p)=1 are easily calculated since

ment, the clgss of solutioqs where all release' times occur Et‘fn(p)zu (r,) may bg written as a sum of two terms that are

integer multiples ofr. In this case, we may write both amenable to fast numerical evaluation. In particular,
up(r) may be written in terms of thbasisfunctionsH,(r)

and

> n(TMH=2 n(pr)an(p) @ =oH(r—r,,n/7 so that
m P
for all n, where we define theelease function gp) as Up(r)= EF an(P—1)Hu(r)+(Gau,_1)(r,p7). (13
ne
1 T)'=pr . . . . .
ay(p)= _ (5) Since the basis functiond ,(r) are fixed for all time, they
0 otherwise. need only be computed once. For smallve also have the

i ) ) useful result thaH (r,7)— G(r,7), which is given in closed
In general, the release times will not occur at multiplesof = 5.y by Eq. (9). The convolution in Eq(13) may be per-
However, by restricting the system so that release times dg);med efficiently using fast Fourier transfor(®FT) tech-
occur on a regular temporal lattice, and choosipg Rt for niques. Once again the FFT &(r,7) need only be com-
someRe 7, we may write puted once, so that it is only necessary to successively
min(R, p) construct the FFT ofi,(r) for p=0,1,2 ... . Wethen have
a(p)=0@u(p)—uy) T ©@W.—u(p—m)), () thatG®up=f‘1(f[G]f[up]), where F denotes the FFT.
m=1 Hence, under the assumption that release times occur on
some regular temporal lattice, the model does not have to be
where up(p)=u(r,,p7). The first term on the right hand evolved as a discontinuous PDE with a self-consistent search
side is a simple threshold condition for the determination offor the times of threshold crossings that define release events.
a release event while the second term ensures that releaseof course, the above approach is only useful if the re-
events are separated by at leagt This restriction of the stricted class of solutions that we have focused on is, in some
model eliminates the need for the precise determination ofense, close to solutions of the full model. To illustrate that
release times. The FDF model then takes the particularlyhis is the case for practical applications, we consider a one-

simple form dimensional cell with a regular spacing of release sites. The
exact solution of a saltatory traveling pulse to this model,
o . . . .
u(r t)=— a S(r—r.), <t<(p+1)7, given by Coombef22], provides a benchmark against which
Qu(r.t T ngl" (P) o b PT (p1)7 to test our reduction of the FDF model. We denote position

(7) within the cell by x and place release sites at points
. . . ) =nd, whered is the release site spacing. In one dimension,
whereQ is the linear differential operator H(x,t) is available in closed fornj22] as H(x,t) =A(x,0)

—A(x,t), where
AL — x| x| t
At =7\ gl ex News) erfd —m+ =
d N
G(r t):[47rDt]”2exp{ - l) ex;{ - i) (9) +exp( X )erfc i + \ﬁ)
’ T4 4Dt)’ D o Va |

andr =|r|. The dynamics fopr<t<(p+1)7is completely |n Fig. 1 we plot the speed of a lurching solitary pulse as

1 2
Q=+ =DV, 8

with Green’s function

(14)

determined in terms of initial datay(r)=u(r,p7) as given in Ref[22] for the full FDF model. In the same figure,
we plot numerical results obtained from our reduced FDF
o X
u(r.t)=— a H(r—r. t—p7r)+(Gou.)(r.t), model. It can be seen _that there is an excellen'F agreement
o= n;l" n(PYH(T=Fn t=p) o p)(r.t) between the two, justifying the practical assumption that re-

(10 lease events can be considered to occur only at integer mul-
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Distance (pm)

0 0.1 0.2 0.3
te FIG. 2. (Color onling An example of two lurching pulses mov-
FIG. 1. Speed of a solitary pulse as a function of the thresholdng out from the center of a deterministic one-dimensional FDF
level u, in the FDF model. Crosses denote results from simulationgnodel with 50 regularly spaced release sites and free boundary

of the reduced FDF model with 500 regularly spaced stores. Parangonditions. Parameters are as in Fig. 1, for a cell of linear dimen-

eters:d=2 pum, D=30 um?/s, 7=10 ms, andrg=0.2 uM/s. sion 100xm andu,=0.1.

tiples of the calcium puff duration. From experimental data it 1

is apparent that the refractory time scale is typically 50 times f(&)= T s (1+e Al), (18
that of the release duratigisee Ref[15] for a discussiopn 1te 1+ee

so we takeR=50. Typically, 7 is approximately 10—20 ms
[27]. so that the probability of release is zero when0 and tends
to one asu—. In summary, the stochastic FDF model is
Stochastic model defined by Eq(10) with thea,(p) €{0,1} treated as random

. . ariables, such thaP(a=1) is given by Eq.(15). In this
Release sites are typically composed of clusters whosv I " ( ) 1S giv y Eq(19) !

. . . framework, the refractory time scale can also be thought of
5|ze(typ|call_y _between 10 an.d 109 channetsa key param- - o9 being drawn from some distribution, since release events
eter determining the fluctuations in mean open probability o re no longer bound by the constraint that they be separated
releasegsee Ref[28] for a recent discussionHere, we con-

; ) . " by at leastrg. In the limit 3—o, f(£&) approaches a step
sider the stochastic gating of receptor channels to give rise fRinction so thatP(u>ug) = ®(u—u,) and we recover our
an effective threshold that can be modeled under the replac%-riginal deterministic rr;:odel ThUSC we interprgtas a pa-

ment uc_—>uc+§, where £ is an additive noise term with rameter describing the level of noise. Note that for sigmoidal
distribution p(¢). The probability thata,(p)=1 s then ;g off the noise distributiopp="f’ is bell shaped with
given by the width of the bell controlled bys.
min(R, p) To illustrate the sort of behaviors that can be generated by
Pay(p)=1)=Pun(p)>uy) [l P (p—m)<uy), this stochastic model, we again turn to a one-dimensional
m=1 cell model with regularly spaced release sites. We begin all
(15 our simulations with an initial release site in the middle of
the cell in an open state. A space-time density plot of a soli-
tary lurching pulse, arising in the deterministic linfit— o,
is shown in Fig. 2. This is useful as a starting point for
_ o comparison with results from the stochastic model, and
Plu=Uo)= J P(E)O(U— U~ E)dE. (16 nicely illustrates that a discrete set of release sites leads to a
wave that propagates with a nonconstant profile, but with a
For convenience, we chooggé) =f’(£) so that well defined speed. In Fig. 3 we plot the corresponding be-
havior in the presence of a finite amount of noise. Initial
P(u>uy)=f(u—u). (17) release from the central site leads to a local elevation of
Ca*, which initiates a propagating €a wave via activa-
In the work by Izu, Wier, and BalkgL7] it has been argued tion of nearby sites, as in the deterministic case. However,
that the probability of release per unit time follows a func- the stochastic nature of the wave is evident from the fact that
tional form given byu"/(K"+u"), with the Hill coefficient it does not propagate symmetrically away from the initial
n=1.6 and C&" sensitivity parameteiK =15 uM. This  event. Although rather well defined to start with, the leftward
suggests that natural choices fif¢) are sigmoidal func- propagating wave terminates at around 1.4 s. Activity in the
tions. Here, we shall make the choice wake of the primary stochastic front can also be sufficient to

where
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FIG. 3. (Color onling Stochastic traveling wave for the model

of Fig. 2, with a finite amount of noise. Herg= 10. FIG. 4. (Color onling A plot of — §(t) as a function ot ! for

three different level of threshold noisg=0.49 (upper curvg B

prime release sites for subsequent spark production, seen 5t0'47 (middle curvg, and5=0.45 (lower curve.

around 1.6 s and again at around 3.2 s. It is also possible for o o o
propagating pulses to lead to the creationtheir wake of these are almost 'ghe defmlng characteristics of a minimal
oppositely propagating pulses. This so-calbettk firinghas mode] for.stochasuc caI_C|um release, we should not be too
been observed in a number of modétee, for example, Surprised if our stochastic FDF model also belongs to the DP
Refs.[29,30), including the stochastic calcium release mod-class. To explore this possibility we consider the behavior of
els of Keizer and Smith15] and Falckeg 16]. Note that itis ~ our model under variation of the noise parameger We
also possible for spontaneous sparks to recruit enough neigdenote the critical value gf at the phase transition between
bors for the initiation of a stochastic front. In the following Propagating and abortive waves I#}. To obtain a good
section, we consider in more detail the statistical propertie§stimate of the critical exponeit we construct the follow-

of FDF waves in the presence of threshold noise. ing effective exponent:

Ill. DIRECTED PERCOLATION S(t)= In[IT(rt)/I1(t)]
B Inr

: (19
From Fig. 1 it is easy to see that the deterministic FDF
model can support traveling waves if the threshold for re-
lease is not too high, i.e., if.<uf , whereu? is defined by where Inr is the distance used for estimating the slope of
the saddle-node bifurcation where the fast and slow branchd$(t). For 8# 8., &(t) will deviate from a straight lingin
of c=c(u.) coalesce. However, in the regime wheng the larget limit) so that plots of5(t) for various choices o
<uy, it is possible that noisy versions of these waves willmay be used to predi@.. An estimate ofs is obtained by
fail to propagate if noise levels are too high. This leads to theextrapolating the behavior af(t) to t 1=0. In Fig. 4 we
interesting possibility of a critical noise that define a borderplot §(t) for variousB, showing that for our choice of sys-
between waves whickurvive or eventually goextinct In-  tem parameters3.~0.47. In Fig. 5 we plot the correspond-
deed, Baat al. [31] have produced numerical evidence thating distribution of survival time$I(t) for the activation pro-
the model of Falckeet al exhibits a nonequilibrium phase cess started from a single site. Using our valuggfve find
transition belonging to the so-called directed percolations~0.159, suggesting that our model does indeed belong to
(DP) universality class. DP is the new testing ground of non-the DP universality class. Whether or not a DP transition will
equilibrium statistical mechanics, much as the Ising model ide seen in a living cell is another matter entirely. As pointed
for equilibrium statistical physics. The analysis of the DPout by Hinrichser{23], the size of a living cell is only a few
universality class is highly nontrivial and it has only beenorders of magnitude larger than the diffusion length, leading
possible to obtain critical exponents for models in this classo strong finite size effects. Moreover, inhomogeneities as
numerically. Precisely at the critical point, the survival prob-well as internal cellular structures are a source of disorder
ability I1(t) of a wave is expected to scale asymptotically asthat may further complicate matters. To date, there is no clear
t~? (see Ref[23] for a review. The best current estimate for experimental evidence that there is a phase transition be-
S comes from the work of Jensdi82], who finds thats  tween survival and extinction of propagating calcium waves
~0.159464. According to the Janssen-Grassberger DP coin living cells.
jecture, any spatiotemporal stochastic process with short Up to now, we have illustrated the properties of the sto-
range interactions, fluctuating active phase and unique norchastic FDF model with one-dimensional studies in the re-
fluctuating (absorbing state, single order parameter, and nogime where wave propagation is possible in the limit of zero
additional symmetries, should belong to the DP class. Sincthreshold noise. In the following section, we turn to two-
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t FIG. 6. (Color onling Temporal sequence snapshots for the two-

FIG. 5. The distribution of survival times for the stochastic FDF dimensional stochastic FDF model wih=100 (low noisg. Other

o . o o arameters are as in Fig. 1. Frames are presented every 0.45 s,
model at the critical noise defining the transition between propaga S tarting in the too left corner and moving riahtward and down. An
ing and abortive waves. For largell(t) scales as™~ %% indicat- g P g g X

. : : initial seed in the center of the cell model leads to the formation and
ing that our model belongs to the DP universality class. . : . .
propagation of a circular front. Spiral waves form in the wake of the

. . . . _wave by spontaneous nucleation. These can be destroyed in wave-
dimensional studies and also explore the parameter reg|m"¥ y sP 1oy
wave collisions and created by spontaneous nucleation.

where an initial disturbance could not propagate in the deter-

ministic regime. and the Jung and Mayer-Kre$3MK) model describe the
interaction of threshold devices with spatially decaying con-
IV. ARRAY ENHANCED COHERENCE RESONANCE nectivity (fixed in the JMK model, but determined by the

) calcium profile in ours In the IMK model, noise is added to
In this section, we consider a two-dimensional cell modekhe state variable whereas in the stochastic FDF model it is
and a regular square lattice of release sites with spatting added to the threshold. Importantly, it is possible for noise to
The basis functionsi(r —r,) can be computed numerically sustain spatiotemporal structures that could not otherwise oc-
from Eqgs.(11) and(9), usingl =2. However, it is also pos- cur. In this case, a removal of all noise would lead to a
sible to compute the basis functions in closed form for twodeterministic system which could not support traveling

special cases. waves. Since noise sustained target waves may collide with
(i) In the limit 7g—, H(r)=E(r?/4D7)/4wD, where each other, this typically limits their growth to a finite region,
E,(x) is the exponential integral function whose size is expected to decrease with increasing noise.
., Indeed, the scale of noisy spiral waves has been shown to be
E,(x)= fwdze— (20 dominated by the ratio of longitudinghormal to the front of
! X z high activity) and the traversdparallel to the frontspeed of

propagation[33]. As noise levels increase, the transversal

This corresponds to the limit of zero pumping, where cal-propagation speeds up, yielding a spiral wave with larger
cium is not removed from the cytosol. curvature. For increasing noise, it is possible that the breakup

(i) For small7, we also have thalti(r,7)—G(r,7) (as of spirals and increased spontaneous nucleation of other spi-
already noted in Sec. Il Since the puff duration is very rals may destroy any coherent motion. However, it is also
small compared tog, this is a very accurate approximation possible to see coherent motion for high levels of noise. In
and so, has been used in numerical simulations for this sedact, coherence can actually be enhanced in regions of high
tion. noise and it is possible to observe synchronized global re-

An example of behavior in the two-dimensional stochastidease events. This type of behavior has recently been termed
FDF model is shown in Fig. 6. Here, a sequence of snapmrray enhanced coherence resona®&CR) and is typical
shots shows nucleation of a circular front, subsequent propaf the way in which noise can lead to structured activity in
gation, and the emergence of noisy spiral waves. Thesgpatially extended excitable systefitst—26. In Fig. 7 we
waves can be annihilated in collisions with other waves anghow an example of this type of phenomenon in the stochas-
created by spontaneous nucleation. The long time behavidic FDF model. Here, an initial disturbance leads to the
of the system is dominated by the interaction of irregularpropagation of a circular target wave. In the wake of the
target and spiral waves. This is typical of dynamics in noisywave, there is a subsequent release from a set of neighboring
spatially extended excitable systems. In fact, the role of flucsites. After this, one sees near simultaneous release from a
tuations for the generation and propagation of patterns ittarge number of sites. This process of simultaneous release
spatially extended excitable media is a subject of increasingepeats, and at every stage recruits more and more stores.
attention and can be traced back to work by Jung and Mayeifter only a few cycles of this process one sees an almost
Kress[33,34]. We note that both the stochastic FDF modelsimultaneous release from all sites. This causes an oscillation
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Ca®* (uMxd/c) 1.5

14

13}

121

FIG. 7. (Color online Temporal sequence snapshots for the two- 0.08 0.12 0.16 0.2
dimensional stochastic FDF model wig= 10 (high noise. Other [3'1
parameters are as in Fig. 1. Frames are presented every 0.45 s,
starting in the top left corner and moving rightward and down. An  FIG. 9. Frequency of oscillation ofU(t) for the system exhib-
initial seed leads to the formation of a circular traveling front. In theiting array enhanced coherence resonance, as a functigh bf
wake of the wave, there is periodic and near simultaneous relead¥ote that frequency increases monotonically with increasing noise

from a large number of stores, typical of systems exhibiting array€vels. Parameters are as in Fig. 7.
enhanced coherence resonance.

an external periodic signal. This is very reminiscent of the

in the global signal(t), defined by behavior of an excitable activator-inhibitor medium recently

I discussed by Hempel, Schimansky-Geier, and Garcia-Ojalvo
[24]. They also consider a model with threshold noibat
U(t)= |?| nzl u(ry,t), (21)  \with fixed Gaussian spatial interactiorend note that when

the nucleation time becomes much smaller than the intrinsic
where|T'| is the number of release sites. An example of thisréfractory time of the system, all cells fire and come back to
oscillation is shown in Fig. 8 for the data of Fig. 7. In this rest essentially at the same time.
figure, we also plot the variation df (t) for the data pre-
sented_ in _Fig. 6. Although showing some level of periodic V. DISCUSSION
behavior, it is clearly not as regular as that of the AECR
example. The frequency of the AECR oscillatifeis mea- In this paper we have introduced a stochastic generaliza-
sured by variation inJ (t)] increases monotonically with the tion of the fire-diffuse-fire model of calcium release from
noise level3~! (above a cutoff below which AECR fajls  internal stores in single cells. This computationally inexpen-
and is shown in Fig. 9. We emphasize that the coherent mdsive model has been numerically simulated in one and two
tion illustrated in Fig. 7 is induced purely by noise, without dimensions. The model exhibits a nonequilibrium phase tran-

sition between propagating and nonpropagating waves of the

; ' y - - ' ' type seen in models belonging to the directed percolation
U universality class. Moreover, noise sustained patterns can
06 1 give way to a form of array enhanced coherence resonance
with increasing levels of threshold noise. A number of natu-
0.5t 1 ral extensions of the model are possible, which we now
briefly discuss.
0.4 In a recent paper, we have shown that the biophysically
| motivated De Young—Keizer modgB5] of calcium release
03t \ I 4 ] i can be viewed as possessing ag $@nsitive thresholfi14].
Hi " i H The use of this IR sensitive threshold within the stochastic
02 N R R L i FDF framework would allow the investigation of the effects
AR HRY A : of stochastic fluctuations in kPlevels in models of De
0.1k Y B AW ‘O 1 H Young—Keizer type. Although not expected to influence any
N '\,:' i critical exponentgsince these should be independent of the
0 , details of the mode] the background level of IPwould be

0 1 2 3 4 5 (6 7 expected to influence the speed and shape of a traveling

wave. Interestingly, precisely this issue has been recently ad-
FIG. 8. Plot of the global signal (t) for the data of Fig. 7solid  dressed by Shuai and Juf@g] in a model of C3" release,

line) and also that of Fig. 6dashed ling which incorporates a stochastic model of ag tBceptor.
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In real cells, release sites are not likely to be arranged omainder of the formalism we have employed then carries
a perfectly regular latticdalthough for cardiac myocytes, over.
release sites are in fact regularly spaced along the longitudi- By combining the above generalizations of the model it
nal axis of the cejl and one should consider a disorderedwill also be possible to explore the importancefatal sites
distribution of sites. A numerical investigation of the effectson wave initiation and propagation. Focal release sites are
of spatial disorder on models of calcium release has sugdistinguished by their higher sensitivity tojJBnd their close
gested that the propagation of waves in a cell with randomlyapposition to neighboring release sites. They are known to be
distributed release sites is reminiscent of that seen in foresble to entrain both the temporal frequency and spatial direc-
fire models, flame propagation in random materials, and epitionality of calcium waveg39]. Interestingly, this issue has
demic spreadi37,38. Similar studies of the computationally recently been considered by Falcke from a theoretical per-
cheap stochastic FDF model will allow a comprehensive staspective[40,41]. Falcke shows that for a stochastic realiza-
tistical analysis, useful for uncovering the criterion for wavetion of the De Young—Keizer model, large peri@mbise in-
propagation as a function of spatial disorder. Although weduced oscillations may be perceived as a nucleation
have focused on regular distributions of release sites for thphenomena where the period of oscillation depends on the
purposes of this paper, there is no computational overhead igeometry of the array of release sites.
considering disordered distributions of stores. All these generalizations, together with fully three-

Throughout this paper we have made the assumptiodimensional simulations, are topics of current investigation.
that diffusion is isotropic. The relaxation of this assump-
tion does not lead to any technical difficulties. For
example, in two dimensions we might consider the
replacement DV2— D, dy,+ Dydyy, so that G(x,y,t) We would like to thank Mike Kearney for stimulating
=exp[—t/rd]exq—x2/4DXt—y2/4Dyt]/4m/Dnyt. The re- discussions about the physics of directed percolation.
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