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Sparks and waves in a stochastic fire-diffuse-fire model of Ca2¿ release

S. Coombes* and Y. Timofeeva†

Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
~Received 24 January 2003; revised manuscript received 9 May 2003; published 25 August 2003!

Calcium ions are an important second messenger in living cells. Indeed, calcium signals in the form of
waves have been the subject of much recent experimental interest. It is now well established that these waves
are composed of elementary stochastic release events~calcium puffs or sparks! from spatially localized cal-
cium stores. Here we develop a computationally inexpensive model of calcium release, based upon a stochastic
generalization of the fire-diffuse-fire threshold model. Our model retains the discrete nature of calcium stores,
but also incorporates a notion of release probability via the introduction of threshold noise. Numerical simu-
lations of the model illustrate that stochastic calcium release leads to the spontaneous production of calcium
sparks that may merge to form saltatory waves. In the parameter regime where deterministic waves exist, it is
possible to identify a critical level of noise, defining a nonequilibrium phase transition between propagating
and abortive structures. A statistical analysis shows that this transition is the same as for models in the directed
percolation universality class. Moreover, in the regime where no initial structure can survive deterministically,
threshold noise is shown to generate a form of array enhanced coherence resonance, whereby all calcium stores
release periodically and simultaneously.

DOI: 10.1103/PhysRevE.68.021915 PACS number~s!: 87.10.1e, 87.17.2d
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I. INTRODUCTION

Variations in calcium concentrations are a vital comp
nent of many cellular processes, including intracellular a
extracellular signaling processes, muscle contraction,
fertilization, cell aptoptosis, and neuronal plasticity@1#. In-
novative techniques for calcium imaging have allowed
perimentalists to resolve spatiotemporal patterns of osc
tions and waves in both isolated cells and tissue~see, for
example, Ref.@2#!. These dynamical phenomena are believ
to be subserved by specific molecular mechanisms for
control of calcium influx and efflux through the cell’s out
membrane. This is typically effected by voltage-gated
channels, calcium exchangers and pumps, as well as cal
release mechanisms from internal compartments within
sarcoplasmic or endoplasmic reticulum and mitochond
stores~see Ref.@3# for a tutorial discussion!. When calcium
is released from internal stores into the cytosol, a wave
increased concentration can travel without deformation,
fining smooth propagation, or with a lurching quality, defi
ing saltatory propagation. For example, the calcium rele
wave in immature xenopus oocytes is saltatory while
fertilization wave in mature oocytes is smooth. There is
vast and growing body of theoretical work devoted to und
standing the basic biophysical mechanisms underlying th
waves~see, for example, Refs.@4–6#!. A common starting
point for much of this work is the observation that Ca21 is
released from internal stores through channels with nonlin
properties. A form of autocatalytic amplification, known
calcium-induced-calcium-release, favors channel openin
the presence of increased cytosolic calcium. After an o
channel closes via inactivation, it cannot reopen for so
time during which it is in arefractorystate. Thus, the releas
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of Ca21 by intracellular stores is self-regulating. A variety o
kinetic schemes have been proposed in connection with th
mechanisms and typically lead to deterministic mod
which reduce to either excitable, oscillatory, or bistable d
namical systems. If whole cell models are assumed to b
reaction diffusion type then powerful techniques from co
tinuum mechanics can be brought to bear in studying non
ear waves@7–14#. When models respect the fact that cha
nels act as discrete Ca21 stores, translation symmetry i
broken and one cannot use such techniques. Importantly,
loss of translation symmetry is a prerequisite for the ex
tence of a saltatory wave. However, the observation of sp
taneous Ca21 puffs or sparks and the fact that calcium wav
can abort suggest that a predominantly deterministic mo
whether based on a discrete or continuum description
stores, is still not the whole story. Keizer and Smith@15# and
Falcke, Isimring, and Levine@16# have emphasized the im
portance of modeling stochastic release kinetics when c
sidering initiation and subsequent propagation of wav
Both have observed waves that abort in the presence
noise, and also shown how noise may generate a spar
wave transition. A recent numerical study of the spark-
wave transition in cardiac cells may be found in Ref.@17#.

The model of Keizer and Smith considers a stocha
ryanodine receptor channel embedded with a continuous
model of reaction diffusion type. The numerical simulatio
of the model requires combining the evolution of a nonline
partial differentiation equation~PDE! with a continuous time
Markov process describing the transitions between the op
closed, and several intermediate states of the ryanodine
ceptor. The model of Falcke, Isimring, and Levine consid
a stochastic version of the De Young–Keizer inositol 1,4
trisphosphate (IP3) receptor model, but with channel cluste
at lattice points coupled byfastdiffusion. The assumption o
fast diffusion and linearity of the equation for calcium tran
port allows an adiabatic elimination of the calcium dynam
in favor of purely stochastic continuous time Markov proce
©2003 The American Physical Society15-1
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for the channel configurations of the IP3 receptor. Without
the need to numerically evolve a PDE to determine calci
profiles, this leads to a computationally cheap model.

In this paper we will pursue the construction of anoth
computationally cheap, yet biophysically realistic, model
intracellular calcium release. We take as our starting po
the deterministic fire-diffuse-fire~FDF! model of Keizer
et al. @18#. This was originally intended as a model of ca
diac myocytes, in which calcium release occurs via ryan
ine receptor Ca21 channels located in a regular array in t
sarcoplasmic reticulum. However, the model can also be
mulated for a continuum distribution of stores@19#. More-
over, a version of the FDF model, which describes IP3 re-
ceptors, has recently been introduced, motivated by
reduction of the De Young–Keizer model@14#. A mathemati-
cal analysis of waves in the deterministic FDF model can
found in Refs.@19–22#. The FDF model uses a thresho
process to mimic the nonlinear properties of Ca21 channels.
A stochastic generalization of the model is introduced a
considering how threshold noise can determine release p
ability. Functional forms for the distribution of this thresho
noise can be inferred from the recent observation of I
Wier, and Balke@17# that the probability of release per un
time has a sigmoidal functional form. This leads to a mo
with simple probabilistic update rules for the release of c
cium from internal stores. By avoiding a Markov proce
description of channel gating, we sidestep the need for c
putationally expensive Monte Carlo–type simulations. Mo
over, the simplicity of the underlying deterministic FD
model can lead to further computational improvemen
When considering a discrete set of release sites and cal
puffs that have a simple on/off temporal structure, the c
cium profile can be solved for in closed form, without th
need for assumptions such as fast diffusion. This obviates
need to numerically evolve a PDE to obtain calcium profil

In Sec. II we describe the FDF model with a discre
distribution of release sites. We prefer to discuss the disc
rather than the continuous formulation of the model sinc
is less studied, yet reduces to the continuum descriptio
the limit of zero spacing between release sites. We make
assumption that release events occur on a regular temp
lattice, to simplify the model so that it may be rewritten
the language of binaryrelease events. As it stands, the origi-
nal FDF model does not allow for any refractory process
We introduce a dynamics for the release events, which
serves as a simple phenomenological model for refract
ness. The calcium profile of the model can then be written
the the sum of two terms. The first is a linear combination
basis functions, with coefficients given by the release eve
The second is a simple convolution of the initial data w
the Green’s function of the model without stores. In th
deterministic model, release events are calculated vi
thresholding of the calcium profile at a release site. Dir
numerical simulations are used to show that this comp
tionally simple version of the FDF model provides an acc
rate representation of the original. Moreover, it is in the id
form to be generalized to incorporate stochastic effects.
FDF threshold is assumed to be the most appropriate poi
which to introduce a source of noise to the model. We sh
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how this leads to a natural description of release events,
ing a probabilistic rather than a deterministic update ru
The effects of threshold noise are explored in Sec. III. He
we focus on a one-dimensional cell model that, in the
sence of noise, can support a traveling saltatory wave. S
ficiently large threshold noise is able to terminate a wa
prematurely, suggesting that for some critical noise lev
there is a nonequilibrium phase transition between propa
ing and abortive waves. A statistical analysis shows that
model exhibits properties consistent with the behavior
other models from the universality class of directed perco
tion ~see Ref. @23# for a review!. A study of a two-
dimensional cell model is presented in Sec. IV. Here,
show that not only does the model support noisy circular a
spiral waves, as expected, but can also exhibit a form
array enhanced coherence resonance@24–26#. We find that
coherent motion, in the form of simultaneous and perio
release of calcium from all stores can be induced purely
noise. Finally, in Sec. V we discuss natural generalization
our model.

II. THE MODEL

The FDF model@18–22# is an idealized model of Ca21

release from internal stores in living cells. It is an all
nothing release model in which a fixed amount of Ca21 is
released when the cytosolic Ca21 density in the neighbor-
hood of a release site reaches a certain threshold. The pa
differential equation describing the density of Ca21, denoted
by u(r ,t), is given by

]u

]t
52

u

td
1D¹2u1 (

nPG
(

mPZ
d~r2rn!h~ t2Tn

m! ~1!

with rPRl and tPR1. Here, l is the physical dimension o
the cell model andG is a discrete set that indexes the stor
Vectors rn determine the locations of the~point! Ca21 re-
lease sites, whilst theTn

m give the time of release of themth
puff at thenth release site. The functionh(t) describes the
shape of a Ca21 puff, which we shall take to be a rectangul
pulse shape given by

h~ t !5
s

t
Q~ t !Q~t2t !, ~2!

whereQ is a Heaviside step function. The strength of t
calcium puff iss, andt is interpreted as the rise time of th
receptor. The model is highly nonlinear because the rele
events are implicitly determined by the times at which t
Ca21 density at a release site takes the threshold valueuc .
More precisely, we write

Tn
m5 inf$tuu~rn ,t !.uc ,ut~rn ,t !.0,Tn

m.Tn
m211tR%,

~3!

to indicate that release events must be separated by at le
time tR , the refractory time scale. The decay timetd in Eq.
~1! models the time scale associated with the action
sarcophasmic/endoplasmic reticulum calcium pumps that
sequester the Ca21 back into the stores. The transport
5-2
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SPARKS AND WAVES IN A STOCHASTIC FIRE- . . . PHYSICAL REVIEW E 68, 021915 ~2003!
Ca21 is assumed to be by diffusion with diffusion coefficie
D. The mode of propagation~continuous or saltatory! de-
pends on the ratio of the time that a single site remains o
to the time it takes for calcium to diffuse between neighb
ing release sites@19#. If this ratio is large enough, the propa
gation is continuous and wave speeds scale asAD, and if it
is small enough the propagation is saltatory and wave sp
scale linearly withD. The analytical tractability of the mode
is not only useful for gaining insight into the dependence
wave speed on system parameters, but can help in redu
the computational demands on a numerical scheme for
self-consistent evolution of Eq.~1!. Consider for the mo-
ment, the class of solutions where all release times occu
integer multiples oft. In this case, we may write

(
m

h~Tn
m!5(

p
h~pt!an~p! ~4!

for all n, where we define therelease function an(p) as

an~p!5H 1 Tn
m5pt

0 otherwise.
~5!

In general, the release times will not occur at multiples oft.
However, by restricting the system so that release times
occur on a regular temporal lattice, and choosingtR5Rt for
someRPZ, we may write

an~p!5Q„un~p!2uc… )
m51

min(R,p)

Q„uc2un~p2m!…, ~6!

where un(p)[u(rn ,pt). The first term on the right hand
side is a simple threshold condition for the determination
a release event while the second term ensures that re
events are separated by at leasttR . This restriction of the
model eliminates the need for the precise determination
release times. The FDF model then takes the particul
simple form

Qu~r ,t !5
s

t (
nPG

an~p!d~r2rn!, pt,t,~p11!t,

~7!

whereQ is the linear differential operator

Q5] t1
1

td
2D¹2, ~8!

with Green’s function

G~r ,t !5@4pDt#2 l /2expS 2
t

td
DexpS 2

r 2

4Dt D , ~9!

andr 5ur u. The dynamics forpt,t,(p11)t is completely
determined in terms of initial dataup(r )5u(r ,pt) as

u~r ,t !5
s

t (
nPG

an~p!H~r2rn ,t2pt!1~G^ up!~r ,t !,

~10!
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where

H~r ,t !5E
0

t

G~r ,t2s!ds ~11!

and

~G^ up!~r ,t !5E
Rl

G~r2r 8,t2pt!up~r 8!dr 8. ~12!

Compared to the original FDF model, the one we have
scribed here is computationally cheaper to solve. Rele
events defined byan(p)51 are easily calculated sinc
un(p)[up(rn) may be written as a sum of two terms that a
both amenable to fast numerical evaluation. In particu
up(r ) may be written in terms of thebasisfunctionsHn(r )
5sH(r2rn ,t)/t, so that

up~r !5 (
nPG

an~p21!Hn~r !1~G^ up21!~r ,pt!. ~13!

Since the basis functionsHn(r ) are fixed for all time, they
need only be computed once. For smallt we also have the
useful result thatH(r ,t)→G(r ,t), which is given in closed
form by Eq. ~9!. The convolution in Eq.~13! may be per-
formed efficiently using fast Fourier transform~FFT! tech-
niques. Once again the FFT ofG(r ,t) need only be com-
puted once, so that it is only necessary to successiv
construct the FFT ofup(r ) for p50,1,2, . . . . Wethen have
that G^ up5F 21(F@G#F@up#), whereF denotes the FFT.
Hence, under the assumption that release times occu
some regular temporal lattice, the model does not have to
evolved as a discontinuous PDE with a self-consistent se
for the times of threshold crossings that define release eve

Of course, the above approach is only useful if the
stricted class of solutions that we have focused on is, in so
sense, close to solutions of the full model. To illustrate t
this is the case for practical applications, we consider a o
dimensional cell with a regular spacing of release sites. T
exact solution of a saltatory traveling pulse to this mod
given by Coombes@22#, provides a benchmark against whic
to test our reduction of the FDF model. We denote posit
within the cell by x and place release sites at pointsxn
5nd, whered is the release site spacing. In one dimensi
H(x,t) is available in closed form@22# as H(x,t)5A(x,0)
2A(x,t), where

A~x,t !5
1

4
Atd

D FexpS 2uxu

AtdD
D erfcS 2

uxu

A4Dt
1A t

td
D

1expS uxu

AtdD
D erfcS uxu

A4Dt
1A t

td
D G . ~14!

In Fig. 1 we plot the speed of a lurching solitary pulse
given in Ref.@22# for the full FDF model. In the same figure
we plot numerical results obtained from our reduced F
model. It can be seen that there is an excellent agreem
between the two, justifying the practical assumption that
lease events can be considered to occur only at integer
5-3



i
e

o

o

e
ac

c-

is

t of
ents
ated
p

dal

by
nal
all

of
oli-

or
nd
to a
h a
be-
ial

of

ver,
that
ial
rd
the
t to

o
on
ra

-
DF
dary
en-

S. COOMBES AND Y. TIMOFEEVA PHYSICAL REVIEW E68, 021915 ~2003!
tiples of the calcium puff duration. From experimental data
is apparent that the refractory time scale is typically 50 tim
that of the release duration~see Ref.@15# for a discussion!,
so we takeR550. Typically, t is approximately 10–20 ms
@27#.

Stochastic model

Release sites are typically composed of clusters wh
size~typically between 10 and 100 channels! is a key param-
eter determining the fluctuations in mean open probability
release~see Ref.@28# for a recent discussion!. Here, we con-
sider the stochastic gating of receptor channels to give ris
an effective threshold that can be modeled under the repl
ment uc→uc1j, where j is an additive noise term with
distribution r(j). The probability thatan(p)51 is then
given by

P„an~p!51…5P„un~p!.uc) )
m51

min(R,p)

P„un~p2m!,uc…,

~15!

where

P~u.uc!5E r~j!Q~u2uc2j!dj. ~16!

For convenience, we chooser(j)5 f 8(j) so that

P~u.uc!5 f ~u2uc!. ~17!

In the work by Izu, Wier, and Balke@17# it has been argued
that the probability of release per unit time follows a fun
tional form given byun/(Kn1un), with the Hill coefficient
n51.6 and Ca21 sensitivity parameterK515 mM. This
suggests that natural choices forf (j) are sigmoidal func-
tions. Here, we shall make the choice

FIG. 1. Speed of a solitary pulse as a function of the thresh
level uc in the FDF model. Crosses denote results from simulati
of the reduced FDF model with 500 regularly spaced stores. Pa
eters:d52 mm, D530 mm2/s, t510 ms, andtd50.2 mM/s.
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11ebuc
J ~11e2buc!, ~18!

so that the probability of release is zero whenu50 and tends
to one asu→`. In summary, the stochastic FDF model
defined by Eq.~10! with thean(p)P$0,1% treated as random
variables, such thatP(a51) is given by Eq.~15!. In this
framework, the refractory time scale can also be though
as being drawn from some distribution, since release ev
are no longer bound by the constraint that they be separ
by at leasttR . In the limit b→`, f (j) approaches a ste
function so thatP(u.uc)5Q(u2uc) and we recover our
original deterministic model. Thus, we interpretb as a pa-
rameter describing the level of noise. Note that for sigmoi
forms of f, the noise distributionr5 f 8 is bell shaped with
the width of the bell controlled byb.

To illustrate the sort of behaviors that can be generated
this stochastic model, we again turn to a one-dimensio
cell model with regularly spaced release sites. We begin
our simulations with an initial release site in the middle
the cell in an open state. A space-time density plot of a s
tary lurching pulse, arising in the deterministic limitb→`,
is shown in Fig. 2. This is useful as a starting point f
comparison with results from the stochastic model, a
nicely illustrates that a discrete set of release sites leads
wave that propagates with a nonconstant profile, but wit
well defined speed. In Fig. 3 we plot the corresponding
havior in the presence of a finite amount of noise. Init
release from the central site leads to a local elevation
Ca21, which initiates a propagating Ca21 wave via activa-
tion of nearby sites, as in the deterministic case. Howe
the stochastic nature of the wave is evident from the fact
it does not propagate symmetrically away from the init
event. Although rather well defined to start with, the leftwa
propagating wave terminates at around 1.4 s. Activity in
wake of the primary stochastic front can also be sufficien

ld
s
m-

FIG. 2. ~Color online! An example of two lurching pulses mov
ing out from the center of a deterministic one-dimensional F
model with 50 regularly spaced release sites and free boun
conditions. Parameters are as in Fig. 1, for a cell of linear dim
sion 100mm anduc50.1.
5-4
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SPARKS AND WAVES IN A STOCHASTIC FIRE- . . . PHYSICAL REVIEW E 68, 021915 ~2003!
prime release sites for subsequent spark production, see
around 1.6 s and again at around 3.2 s. It is also possible
propagating pulses to lead to the creation~in their wake! of
oppositely propagating pulses. This so-calledback firinghas
been observed in a number of models~see, for example,
Refs.@29,30#!, including the stochastic calcium release mo
els of Keizer and Smith@15# and Falcke@16#. Note that it is
also possible for spontaneous sparks to recruit enough ne
bors for the initiation of a stochastic front. In the followin
section, we consider in more detail the statistical proper
of FDF waves in the presence of threshold noise.

III. DIRECTED PERCOLATION

From Fig. 1 it is easy to see that the deterministic FD
model can support traveling waves if the threshold for
lease is not too high, i.e., ifuc,uc* , whereuc* is defined by
the saddle-node bifurcation where the fast and slow branc
of c5c(uc) coalesce. However, in the regime whereuc

,uc* , it is possible that noisy versions of these waves w
fail to propagate if noise levels are too high. This leads to
interesting possibility of a critical noise that define a bord
between waves whichsurvive or eventually goextinct. In-
deed, Ba¨r at al. @31# have produced numerical evidence th
the model of Falckeet al. exhibits a nonequilibrium phase
transition belonging to the so-called directed percolat
~DP! universality class. DP is the new testing ground of no
equilibrium statistical mechanics, much as the Ising mode
for equilibrium statistical physics. The analysis of the D
universality class is highly nontrivial and it has only bee
possible to obtain critical exponents for models in this cla
numerically. Precisely at the critical point, the survival pro
ability P(t) of a wave is expected to scale asymptotically
t2d ~see Ref.@23# for a review!. The best current estimate fo
d comes from the work of Jensen@32#, who finds thatd
;0.159 464. According to the Janssen-Grassberger DP
jecture, any spatiotemporal stochastic process with s
range interactions, fluctuating active phase and unique n
fluctuating~absorbing! state, single order parameter, and
additional symmetries, should belong to the DP class. Si

FIG. 3. ~Color online! Stochastic traveling wave for the mode
of Fig. 2, with a finite amount of noise. Here,b510.
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these are almost the defining characteristics of a mini
model for stochastic calcium release, we should not be
surprised if our stochastic FDF model also belongs to the
class. To explore this possibility we consider the behavior
our model under variation of the noise parameterb. We
denote the critical value ofb at the phase transition betwee
propagating and abortive waves bybc . To obtain a good
estimate of the critical exponentd, we construct the follow-
ing effective exponent:

d~ t !5
ln@P~rt !/P~ t !#

ln r
, ~19!

where lnr is the distance used for estimating the slope
P(t). For bÞbc , d(t) will deviate from a straight line~in
the larget limit ! so that plots ofd(t) for various choices ofb
may be used to predictbc . An estimate ofd is obtained by
extrapolating the behavior ofd(t) to t2150. In Fig. 4 we
plot d(t) for variousb, showing that for our choice of sys
tem parameters,bc;0.47. In Fig. 5 we plot the correspond
ing distribution of survival timesP(t) for the activation pro-
cess started from a single site. Using our value ofbc we find
d;0.159, suggesting that our model does indeed belon
the DP universality class. Whether or not a DP transition w
be seen in a living cell is another matter entirely. As point
out by Hinrichsen@23#, the size of a living cell is only a few
orders of magnitude larger than the diffusion length, lead
to strong finite size effects. Moreover, inhomogeneities
well as internal cellular structures are a source of disor
that may further complicate matters. To date, there is no c
experimental evidence that there is a phase transition
tween survival and extinction of propagating calcium wav
in living cells.

Up to now, we have illustrated the properties of the s
chastic FDF model with one-dimensional studies in the
gime where wave propagation is possible in the limit of ze
threshold noise. In the following section, we turn to tw

FIG. 4. ~Color online! A plot of 2d(t) as a function oft21 for
three different level of threshold noise,b50.49 ~upper curve!, b
50.47 ~middle curve!, andb50.45 ~lower curve!.
5-5
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S. COOMBES AND Y. TIMOFEEVA PHYSICAL REVIEW E68, 021915 ~2003!
dimensional studies and also explore the parameter reg
where an initial disturbance could not propagate in the de
ministic regime.

IV. ARRAY ENHANCED COHERENCE RESONANCE

In this section, we consider a two-dimensional cell mo
and a regular square lattice of release sites with spacind.
The basis functionsH(r2rn) can be computed numericall
from Eqs.~11! and ~9!, using l 52. However, it is also pos
sible to compute the basis functions in closed form for t
special cases.

~i! In the limit td→`, H(r )5E1(r 2/4Dt)/4pD, where
E1(x) is the exponential integral function

E1~x!5E
x

`

dz
e2z

z
. ~20!

This corresponds to the limit of zero pumping, where c
cium is not removed from the cytosol.

~ii ! For smallt, we also have thatH(r ,t)→G(r ,t) ~as
already noted in Sec. II!. Since the puff duration is very
small compared totR , this is a very accurate approximatio
and so, has been used in numerical simulations for this
tion.

An example of behavior in the two-dimensional stochas
FDF model is shown in Fig. 6. Here, a sequence of s
shots shows nucleation of a circular front, subsequent pro
gation, and the emergence of noisy spiral waves. Th
waves can be annihilated in collisions with other waves a
created by spontaneous nucleation. The long time beha
of the system is dominated by the interaction of irregu
target and spiral waves. This is typical of dynamics in no
spatially extended excitable systems. In fact, the role of fl
tuations for the generation and propagation of patterns
spatially extended excitable media is a subject of increas
attention and can be traced back to work by Jung and Ma
Kress@33,34#. We note that both the stochastic FDF mod

FIG. 5. The distribution of survival times for the stochastic FD
model at the critical noise defining the transition between propa
ing and abortive waves. For larget, P(t) scales ast20.159, indicat-
ing that our model belongs to the DP universality class.
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and the Jung and Mayer-Kress~JMK! model describe the
interaction of threshold devices with spatially decaying co
nectivity ~fixed in the JMK model, but determined by th
calcium profile in ours!. In the JMK model, noise is added t
the state variable whereas in the stochastic FDF model
added to the threshold. Importantly, it is possible for noise
sustain spatiotemporal structures that could not otherwise
cur. In this case, a removal of all noise would lead to
deterministic system which could not support travelin
waves. Since noise sustained target waves may collide w
each other, this typically limits their growth to a finite regio
whose size is expected to decrease with increasing no
Indeed, the scale of noisy spiral waves has been shown t
dominated by the ratio of longitudinal~normal to the front of
high activity! and the traversal~parallel to the front! speed of
propagation@33#. As noise levels increase, the transvers
propagation speeds up, yielding a spiral wave with larg
curvature. For increasing noise, it is possible that the brea
of spirals and increased spontaneous nucleation of other
rals may destroy any coherent motion. However, it is a
possible to see coherent motion for high levels of noise.
fact, coherence can actually be enhanced in regions of h
noise and it is possible to observe synchronized global
lease events. This type of behavior has recently been ter
array enhanced coherence resonance~AECR! and is typical
of the way in which noise can lead to structured activity
spatially extended excitable systems@24–26#. In Fig. 7 we
show an example of this type of phenomenon in the stoch
tic FDF model. Here, an initial disturbance leads to t
propagation of a circular target wave. In the wake of t
wave, there is a subsequent release from a set of neighbo
sites. After this, one sees near simultaneous release fro
large number of sites. This process of simultaneous rele
repeats, and at every stage recruits more and more sto
After only a few cycles of this process one sees an alm
simultaneous release from all sites. This causes an oscilla

t-

FIG. 6. ~Color online! Temporal sequence snapshots for the tw
dimensional stochastic FDF model withb5100 ~low noise!. Other
parameters are as in Fig. 1. Frames are presented every 0.
starting in the top left corner and moving rightward and down. A
initial seed in the center of the cell model leads to the formation a
propagation of a circular front. Spiral waves form in the wake of t
wave by spontaneous nucleation. These can be destroyed in w
wave collisions and created by spontaneous nucleation.
5-6
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SPARKS AND WAVES IN A STOCHASTIC FIRE- . . . PHYSICAL REVIEW E 68, 021915 ~2003!
in the global signalU(t), defined by

U~ t !5
1

uGu (
n51

uGu

u~rn ,t !, ~21!

whereuGu is the number of release sites. An example of th
oscillation is shown in Fig. 8 for the data of Fig. 7. In th
figure, we also plot the variation ofU(t) for the data pre-
sented in Fig. 6. Although showing some level of period
behavior, it is clearly not as regular as that of the AEC
example. The frequency of the AECR oscillation@as mea-
sured by variation inU(t)] increases monotonically with the
noise levelb21 ~above a cutoff below which AECR fails!,
and is shown in Fig. 9. We emphasize that the coherent
tion illustrated in Fig. 7 is induced purely by noise, witho

FIG. 7. ~Color online! Temporal sequence snapshots for the tw
dimensional stochastic FDF model withb510 ~high noise!. Other
parameters are as in Fig. 1. Frames are presented every 0.
starting in the top left corner and moving rightward and down. A
initial seed leads to the formation of a circular traveling front. In t
wake of the wave, there is periodic and near simultaneous rel
from a large number of stores, typical of systems exhibiting ar
enhanced coherence resonance.

FIG. 8. Plot of the global signalU(t) for the data of Fig. 7~solid
line! and also that of Fig. 6~dashed line!.
02191
s
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an external periodic signal. This is very reminiscent of t
behavior of an excitable activator-inhibitor medium recen
discussed by Hempel, Schimansky-Geier, and Garcia-Oja
@24#. They also consider a model with threshold noise~but
with fixed Gaussian spatial interactions! and note that when
the nucleation time becomes much smaller than the intrin
refractory time of the system, all cells fire and come back
rest essentially at the same time.

V. DISCUSSION

In this paper we have introduced a stochastic general
tion of the fire-diffuse-fire model of calcium release fro
internal stores in single cells. This computationally inexpe
sive model has been numerically simulated in one and
dimensions. The model exhibits a nonequilibrium phase tr
sition between propagating and nonpropagating waves of
type seen in models belonging to the directed percola
universality class. Moreover, noise sustained patterns
give way to a form of array enhanced coherence resona
with increasing levels of threshold noise. A number of na
ral extensions of the model are possible, which we n
briefly discuss.

In a recent paper, we have shown that the biophysic
motivated De Young–Keizer model@35# of calcium release
can be viewed as possessing an IP3 sensitive threshold@14#.
The use of this IP3 sensitive threshold within the stochast
FDF framework would allow the investigation of the effec
of stochastic fluctuations in IP3 levels in models of De
Young–Keizer type. Although not expected to influence a
critical exponents~since these should be independent of t
details of the model!, the background level of IP3 would be
expected to influence the speed and shape of a trave
wave. Interestingly, precisely this issue has been recently
dressed by Shuai and Jung@36# in a model of Ca21 release,
which incorporates a stochastic model of an IP3 receptor.

-

s,

se
y

FIG. 9. Frequencyf of oscillation ofU(t) for the system exhib-
iting array enhanced coherence resonance, as a function ofb21.
Note that frequency increases monotonically with increasing no
levels. Parameters are as in Fig. 7.
5-7
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In real cells, release sites are not likely to be arranged
a perfectly regular lattice~although for cardiac myocytes
release sites are in fact regularly spaced along the longit
nal axis of the cell! and one should consider a disorder
distribution of sites. A numerical investigation of the effec
of spatial disorder on models of calcium release has s
gested that the propagation of waves in a cell with rando
distributed release sites is reminiscent of that seen in fo
fire models, flame propagation in random materials, and
demic spread@37,38#. Similar studies of the computationall
cheap stochastic FDF model will allow a comprehensive
tistical analysis, useful for uncovering the criterion for wa
propagation as a function of spatial disorder. Although
have focused on regular distributions of release sites for
purposes of this paper, there is no computational overhea
considering disordered distributions of stores.

Throughout this paper we have made the assump
that diffusion is isotropic. The relaxation of this assum
tion does not lead to any technical difficulties. F
example, in two dimensions we might consider t
replacement D¹2→Dx]xx1Dy]yy , so that G(x,y,t)
5exp@2t/td#exp@2x2/4Dxt2y2/4Dyt#/4pADxDyt. The re-
P

s

,

.V

so

it
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mainder of the formalism we have employed then carr
over.

By combining the above generalizations of the mode
will also be possible to explore the importance offocal sites
on wave initiation and propagation. Focal release sites
distinguished by their higher sensitivity to IP3 and their close
apposition to neighboring release sites. They are known to
able to entrain both the temporal frequency and spatial di
tionality of calcium waves@39#. Interestingly, this issue ha
recently been considered by Falcke from a theoretical p
spective@40,41#. Falcke shows that for a stochastic realiz
tion of the De Young–Keizer model, large period~noise in-
duced! oscillations may be perceived as a nucleati
phenomena where the period of oscillation depends on
geometry of the array of release sites.

All these generalizations, together with fully thre
dimensional simulations, are topics of current investigatio

ACKNOWLEDGMENTS

We would like to thank Mike Kearney for stimulatin
discussions about the physics of directed percolation.
atl.

ys.

ay
nts/

v.

A.

J.
@1# M.J. Berridge, J. Neurophysiol.499, 291 ~1997!.
@2# Calcium Signaling (Methods in Signal Transduction), edited

by J.W. Putney~CRC Press, London, 1999!.
@3# B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and

Walter, Molecular Biology of the Cell~Garland Science, New
York, 2002!.

@4# A. Goldbeter,Biochemical Oscillations and Cellular Rhythm
~Cambridge University Press, Cambridge, 1996!.

@5# J. Keener and J. Sneyd,Mathematical Physiology~Springer,
New York, 1998!.

@6# Computational Cell Biology, edited by C.P. Fall, E.S. Marland
J.M. Wagner, and J.J. Tyson~Springer, New York, 2002!.

@7# J. Sneyd, S. Girard, and D. Clapham, Bull. Math. Biol.55, 315
~1993!.

@8# G. DuPont and A. Goldbeter, Biophys. J.67, 2191~1994!.
@9# J. Sneyd, J. Keizer, and M.J. Sanderson, FASEB J.9, 1463

~1995!.
@10# M.S. Jafri and J. Keizer, Bull. Math. Biol.59, 1125~1997!.
@11# J. Sneyd, P.D. Dale, and A. Duffy, SIAM~Soc. Ind. Appl.

Math.! J. Appl. Math.58, 1178~1998!.
@12# G.C. Chopra, B.D. Sleeman, J. Brindley, D.G. Knapp, and A

Holden, Bull. Math. Biol.61, 273 ~1999!.
@13# J. Sneyd, A. LeBeau, and D. Yule, Physica D145, 158~2000!.
@14# Y. Timofeeva and S. Coombes, J. Math. Biol.~unpublished!.
@15# J.E. Keizer and G.D. Smith, Biophys. Chem.72, 87 ~1998!.
@16# M. Falcke, L. Tsimring, and H. Levine, Phys. Rev. E62, 2636

~2000!.
@17# L.T. Izu, W.G. Wier, and C.W. Balke, Biophys. J.80, 103

~2001!.
@18# J.E. Keizer, G.D. Smith, S. Ponce Dawson, and J. Pear

Biophys. J.75, 595 ~1998!.
@19# J.E. Pearson and S. Ponce Dawson, Physica A257, 141~1998!.
@20# J.E. Pearson, S. Ponce Dawson, J. Keizer, and G. Sm
.

.

n,

h,

http://www-xdiv.lanl.gov/XCM/pearson/skid/_row/_relay.ps
@21# S. Ponce Dawson, J. Keizer, and J.E. Pearson, Proc. N

Acad. Sci. U.S.A.96, 6060~1999!.
@22# S. Coombes, Bull. Math. Biol.63, 1 ~2001!.
@23# H. Hinrichsen, Adv. Phys.49, 815 ~2000!.
@24# H. Hempel, L. Schimansky-Geier, and J. Garcia-Ojalvo, Ph

Rev. Lett.82, 3713~1999!.
@25# B. Hu and C. Zhou, Phys. Rev. E61, R1001~2000!.
@26# C. Zhou, J. Kurths, and B. Hu, Phys. Rev. Lett.87, 098101

~2001!.
@27# Color versions of all figures and animations of waves m

be seen at http://www.lboro.ac.uk/departments/ma/prepri
papers03/03-02abs.html

@28# L. Meinhold and L. Schimansky-Geier, Phys. Rev. E66,
050901~R! ~2002!.

@29# J. Garcia-Ojalvo and L. Schimansky-Geier, J. Stat. Phys.101,
473 ~2000!.

@30# P. Bak, K. Chen, and M. Paczuski, Phys. Rev. Lett.86, 2475
~2001!.

@31# M. Bär, M. Falcke, H. Levine, and L.S. Tsimring, Phys. Re
Lett. 84, 5664~2000!.

@32# I. Jensen, J. Phys. A32, 5233~1999!.
@33# P. Jung and G. Mayer-Kress, Phys. Rev. Lett.74, 2130~1995!.
@34# P. Jung and G. Mayer-Kress, Chaos5, 458 ~1995!.
@35# G.W. De Young and J. Keizer, Proc. Natl. Acad. Sci. U.S.

89, 9895~1992!.
@36# J.W. Shuai and P. Jung, Phys. Rev. E67, 031905~2003!.
@37# E.A. Bugrim, A.M. Zhabotinsky, and I.R. Epstein, Biophys.

73, 2897~1997!.
@38# C.S. Pencea and H.G.E. Hentschel, Phys. Rev. E62, 8420

~2000!.
@39# J.S. Marchant and I. Parker, EMBO J.20, 65 ~2001!.
@40# M. Falcke, Biophys. J.84, 28 ~2003!.
@41# M. Falcke, Biophys. J.84, 42 ~2003!.
5-8


